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Basic Information 2

> Piotr Lichota, PhD DSc
» Piotr.Lichota@pw.edu.pl
> consultations: Monday 1315-149, r, 106 (IAAM, Nowowiejska 24)

Materials:

» website:
https://www.meil.pw.edu.pl/zm/ZM/Dydaktyka/Prowadzone-
przedmioty/System-Identification-In-Aerospace-Engineering

> login: SIAE
» password: Sysld

Points Grade
Rules: (above)
» Multiple choice test (20 question, 4 answers), 25pts 1250 3.0
» Laboratory (4 exercises), 4 pts 15.00 3.5
> Attendance, 1 pt (6att) 17.50 4.0
20.00 4.5
of rochmotoey T 22.50 | 5.0
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Topics /.
Introduction

Mathematical model

Experiment planning

Measurement and data compatibility check
Equation error methods

Output error methods

Filter error methods

Identification from frequency responses
Artificial neural networks

Online identification

Dynamically unstable aircraft identification
Validation
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System identification 5
Task Known | Unknown
u | xX= f (u’ X) y Identification | u,y f.g
y =g, x) Control .9,y u
Simulation | f,g,u y

,Determination, on the basis of observation of input and output, of a
system within a specified class of systems to which the system under
test is equivalent.”

Lofti Zadeh

» Parameter estimation - known model structure, unknown parameter
values

» System identification - unknown model structure, unknown
parameter values

\Warsaw University
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System identification '{

» Aims
» Obtaining mathematical models that can be used for

» Understanding cause-effect relationships that underlies a physical
phenomenon

» Investigating system performance characteristics

» Verifying results obtained from theory/wind tunnel/CFD
» Developing aerodynamic databases for flight simulators
» Expanding flight envelope during prototype testing

» Developing in-flight simulators

» Designing control laws and flying qualities evaluation

» Flight path reconstruction

» Diagnostics, adaptive control and reconfiguration

» Assumptions:
» True state of the system is deterministic
» Physical principles that underlay the process can be modelled
» It is possible to perform specific experiments
» Measurements of the system inputs and object response are available

\Warsaw University
of Technology



System Identification

» 1777 - Daniel Bernoulli

» Introduces the concept of the Maximum
Likelihood function:
»,The most probable choice between several
discrepant observations and the formation
therefrom of the most likely induction”

» 1795 - Carl Friedrich Gauss

» Develops and applies the Least Squares Method
for celestial bodies orbits estimation

» 1912-1922 - Sir Ronald Aylmer Fisher

» Develops and popularizes Maximum Likelihood
Principle

\Warsaw University
of Technology
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Early days 8

> Norton 1919-1923

1. Sand boxes mounted under the wing
(2x1501b) at 14.7ft from the longitudinal axis

2. Quick emptying of one box (less than 0.5s)
- the plane starts to roll

3. After reaching a certain tilt angle (90deg), _
empty the second box Curtiss IN4

N
!_' A &£1.4 & »
: - . T e
) - oy
3 4 Q:
r ,

» The maneuver was performed multiple times

» Registration of linear and angular velocities

» Evaluations of stability and control
derivatives based on very simple formulas

m = 72slug = 1050kg
L = 1501lb - 14.7ft
LpP =L/m

\Warsaw University
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Time vector method (50s) )

V. V. VVVYVY

vV VYV

Graphical method
Exciting object vibrations by using a sharp rectangular signal
Vibrations registration until they disappeare

Magnitude and phase evaluation
for individual degrees of freedom

Drawing and adding vectors
for individual degrees of freedom

Calculation of selected model
parameters

_Ixx ’P’

1/2pV?Sb [R]

The method allowed the estimation
of only two (e.g. C,, Cg) of three parameters
- the third one is Known, e.g. from tunnel studies B

Time-consuming process R|
Difficulties with application to strongly damped objects

\Warsaw University
of Technology
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Analog matching (60s) 1()

» Solving simplified equations of motion by using analog computer

» Manually select model parameter values to match model response
and measurement data —

» Estimation accuracy depends
on the operator's sensitivity
in tuning parameters

» Time-consuming process

» The method allowed for
the identification of only a few
selected parameters

(with the greatest impact on
the model)

» The results of the method
depended very strongly on
the quality of the recorded data

\Warsaw University
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Modern system identification 11

» Billerud-IBM Project in 1963-1966

» The use of computers to manage production at the Billerud paper
mill (600 tons)

> 1965 - Karl Astrom and Torsten Bohlin implement the maximum
likelihood principle on a digital computer for system identification

-~
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4-M methodology 12

- plan and perform the experiment

» Measurement - measure and register the signals (flight parameters,
control surfaces deflections)

» Method - chose appropriate identification method, estimate
» Model - build a mathematical model, evaluate model response
» Validate the model

Aircraft

Optimal
inputs signals

\Warsaw University
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Coordinate systems

» Earth fixed reference frame O,x,y,z, O
» Point O, located on the surface of Earth

> O,X,y, plane is tangent to the surface of Earth %

» Vehicle-carried Earth axes Ox,y,z
» Point O is an arbitrary point 018' t%e aircraft
» When t=0, Ox,y,z, axes coincide with Ox,y,z,
» The Ox,y,z, axes are parallel to Ox,y;z, plane
» Body fixed reference frame Oxyz

» Point O is an arbitrary ].:Iomt of the aircraft
(lies in the symmetry plane)

» Ox axis lies in the Oxz plane and is parallel
to mean aerodynamic chord

» Oy axis is directed towards right wing

» Oz axis is directed downward <
and completes the right-handed frame

\Warsaw University
of Technology
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Attitude VA

> Tait-Bryant angles (Euler angles convenction for aeronautics)

» Yaw angle ¥ - angle of rotation along Oz, axis.
After the rotation, Ox, axis coincide with the projection of the
longitudinal axis Ox on the horizontal plane Ox,y,

» Pitch angle © - Rotation angle of the vertical plane Oy,z.
After the rotation, the Ox, axis rotated by ¥ coincides with
the longitudinal axis Ox

» Roll angle ® - angle of rotation along longitudinal axis.
After the rotation, Oy, axis rotated by ¥ X

coincides with the Oy axis
IP o
L g :
X, ‘ H“HJ .

\Warsaw University
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Flight controls deflection 19

> ,Positive” pilot action results in ,negative” flight surface deflection
and ,positive” aircraft reaction (with respect to particular axis)

> Pitch: pull the stick (+) - elevator up (-) — aircraft nose pitch up (+)
> Roll: push the stick right (+) - right aileron up, left aileron down (-)
- right wing down, left wing up (+)
> Yaw: push right pedal (+) - rudder right (-) - aircraft nose yaw right (+)

» Engine control 0,

> Push the thrust lever (+)
- engine power increased (+) £ /0

. speed increased (+) A ) ‘
+
Og
<HrN
\Warsaw University
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Dynamic equations of motion 16

» Change theorems when origin at CG

dll dKg dc oc
— =F —= M — =—=4+ Q0 X
dt 0 dt 3¢ + C
» Rigid body

N=mV, Kgy=IQ

» Symmetry plane

Ixx 0 _Ixz-
I=]| O Iy, 0
__Ixz 0 Izz |

» Kinematic relationships

» Linear equations - small perturbances

» Steady straight symmetric flight
in equilibrium

\Warsaw University
of Technology
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Aerodynamic forces and moments 1/

> Taylor series expansion (usually first order)
. (1) (X R xO) (2) (X R xO)Z
fx) = fxo) + f7(x) 1 + £+ (x0) 21 + -+ Ry (x, xo)
[ ] y [ ]
» Aerodynamic derivatives valid F(x)
for a specified flight condition and f(xof

configuration

» Linear/nonlinear approximation . f(x)

» Multivariate function
» State variables |
» Control variables —

X
» Usually ignores longitudinal-lateral-directional couplinxgo *
X, = X, + 2% 0y 4 OXa Y +%AQ +%A5E +%A5r 4.
0 aU ow a0 00k 067
o 9V OP OR 05, 6z °

\Warsaw University
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[ J [ J [ ‘
Aerodynamic derivatives 1
» Dimensional

v 1 0X v 1 dY
fi_mafi Ei_mafi
L 1 0L Y. — 1 oM
i Ixx aEi i Iyy afi
» Non-dimensional
X Y
CX — 1 CY — 1
5PpV5S 5pV5S
L M
Cl — 1 Cm — 1
> pVZSh > pVEse
» for a given flight parameter o N
L AU AW AQE e Y
L e A A A
vV = — p =7 T =" . dog e 30
Warsaw University VO 2 VO 2 VO

of Technology
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[ J [ J ‘
Nonlinear vs linear Vi
AVo] [—0.0171 —-3.6619 —1.0969 —32.1741[AV,] [ 0.0999 ]
Ad | _ | —0.003 —0.7534 0.9279 0 Aa |, |—0.0016 , <
AQ 0 —43115 —1.2657 0 AQ —0.1397|°E
A0l Lo 0 1 0 A0 L0
o ]535 J T T T T T T .
E N_ﬂn]mear
= 153.0 Linear
E

152.5 I v | | I | |
6

o, deg
L ) I

"E:‘D

.- 0

4 -5 | | | | | | [ |
].ﬂ | I I I I | I !

®, deg
L |

o, deg
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| |
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Experiment 20

> Registered signals determine scope and accuracy of the estimated
parameters

» Determine flight test aim

> Select aircraft configuration

» Select trim points

» Select manoeuvres and specify the excitations

FL 300 02

FL 260

Altitude

FL 160

H 80 /

100 150 200 250 300 True Ai rspE:-Ed {Kt S}
Elevator 3-2-1-1 Elevator pulse Bank angle Alleron/Spoiler Rudder Doublet Thrust Doublet

Warsaw University ":I q |H| l— | /2 |— [ ‘.:l I‘ ‘ /\
of Technology | | N 0
Short Period Phugoid Level Turn Maneuver Bank to Bank Dutch Roll
Maneuver




Experiment

» Procedure for each maneuver
» Flight at specified height at specified velocity
» Determine aircraft trim configuration
» Deflect flight control and perform a maneuver
» Return to the equilibrium (steady horizontal flight)
» The same maneuver is performed multiple times to eliminate

© P. Lichota, 2023/24

disturbances
Flights Task Hours

1 Check flight test instrumentation 2,0

1 Envelope expansion 1,5

2 Airdata system calibration 8,5
14 Systerr} identification and modle valifiation 425

(4 altitudes, 5 speeds, 37 configurations) ’

2 Ground effects identification 4.5

1 22 stall maneuvers with 5 configurations 3,0

2 Ground and taxi tests 3,5

4 Noise recording in hangar, on runway and in flight 7,5

Warsaw University 3 Special tests: load drop, takeoff and 1.anding 50

of Technology on unprepared runway and runway with snow ’

30 ~1000 maneuvers and 37 configurations 78,0

27
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Frequency sweep (chirp signal) 22

» Continuous sinusoidal signal with frequencies that have to cover
range
of interest

» Usually used for helicopters and STOL/VTOL aircrafts Sys-ID

» Starts with low frequencies, from 0.1 rad/s to 10 rad/s
» Long duration 60-90s

» The exact shape is of secondary importance
» Often faded at the beginning

» Only one flight control can be deflected at a time
» Other controls are used to suppress additional motions

» Problem with staying at certain flight condition
» Can lead to resonance - flight safety

» Used when there is no or small amount of knowledge about the
system

\Warsaw University
of Technology



Input Amplitude

Input Amplitude
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Frequency sweep 23

Linear Logarithmic

T
_ 1 t* u =sin| wot+ C;(w; — wyp) (— eC1t/T _ t)
u = sin w0t+§(w1—w0)T C,

Usually (empirical): C,=4, C,=0.01876

1.5 ) ; Y ; Y ; T ; 0.01

0.008L-—obi b AL B LR B R B

AT
|

I ‘I.,JIIII il

=
:

Power Spectrum
o
o
o
]

0 10 20 30 40 50 G0 70 80 a0 10 ' — -10“' : — -101
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1.5 J : T ; J ; J ; 0.025 - — T T T T ;

o
o
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[
=
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Power Spectrum
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Multi-step - Pulse 2/

Multi-step signals: 1,0 ! ! . .
> Easy to apply i -------- J__I- Pulse
» Require a-priori model 08 A | Doublet -
> Abrupt flight control deflections | \[ SN\ T 1o -
can cause high loads and inducez ™ = g i 1-2-1
aeroelastic phenomena B B O 1
P S L =\ W P
Pulse - the simplest multi-step [/ V. ([ A Nl
» Energy located in a narrow I e N N N _
frequency band 0.0 = | |
» Broadening the frequency band " 0 1 2 3 4 5
causes a decrease in energy Normalized frequency

- it may be too low to excite the system
» Can only be used for exciting low frequency motion (e.g. phugoid)
> Asymmetric signal (non-zero energy for zero frequency)
» Switching time At selected for a selected frequency

\Warsaw University
of Technology
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Multi-step - Doublet 2

Doublet - Composition of 1,0 ; ; -
two pulse signals s T S Il Pulse
» Much wider frequency band: 0.8y A | Doublet -
50% of the signal energy in BIERYFZAR S n I
a bandwidth 1:3 L 0,6 =y YO B\ R - 1-2-1 -
. . ~ s R (A .
» Symmetrical signal 13 044t S =AY I '|_|_3_2_1_1_
» Switching time I8 L VA Y - SRR S — _
wAt = 2.3 0,2 |- SRR, W SO SR _
At 2.3  2m 1 . N A |
T w 27w 2.7 9% 1 2 3 4 5

. . Normalized frequency
> In practice, At is selected

to correspond to half the oscillation period T,
i.e., the total length of the signal corresponds to the period of motion

\Warsaw University
of Technology



Multi-step - 3-2-1-1

3-2-1-1: Composition of pulses
with durations in the ratio 3:2:1:1

» Much wider frequency band:
50% of the signal energy

in a bandwith 1:10

(Q\]
=)
<

o . \
Asymmetric signal =

YV VYV

Switching time

WAt =1.6 > At = ZT

» often At is based oln
WAt =2.1=>At= =T

from the trim point
» Balance amplitudes
» 1-1-2-3

© P. Lichota, 2023/24

26

1,0 . .
---------------------------------------- Il  Pulse
RVAVIPAN IS L

016 """""""""""""""""""""" - -I_ 1_2_1

0,4 [y I _|_|—3-2-1-1
0,2 [ i b e A A i
O’OO 1 2 4 g

1-2-1: Ease in energy spectrum shifting

\Warsaw University
of Technology
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Switching time selection 2/

» Marchand Method used to determine switching times for multi-steps

1. Build a priori model
2. Obtain Bode magnitude plot

3. Determine frequency bands in which aerodynamic derivatives are
identifiable
» Aerodynamic derivative is identifiable if its magnitude is large in
comparison to other derivatives i.e. aerodynamic derivative can not
be estimated in a frequency band in which its magnitude is small in
comparison to magnitudes of other aerodynamic derivatives

e Aerodynamic derivative is identifiable if its term has a magnitude of at least
10% of the largest term’s magnitude

» If the magnitude of the inertia term is small in comparison to other
terms then aerodynamic derivatives can be estimated only as ratio
of themselves

4. Determine switching time At

\Warsaw University
of Technology
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Marchand Method 28

1. A-priori model

AW[ _1 0 —30 1[AW 0
[AQ] - [—1.64 —4.01”AQ T [—2.61] Adg
2. Bode plot
AQ(w) | [MwAW(w) MQAQ((D)
3. Frequency range: 6-10 rad/s NSNS . :
> Selected frequency: 8rad/s N <5 N
» Doublet
2.3 2.3
At ~ — =~ — =~ (.35

_
wal
-,
W 8 L
=
=
=l
1
—
-

A6E (w)

\Warsaw University
of Technology —120
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Multisine 29

M
- (2mkt
uj = Z Aysin = + @y

k=1

» Determining the base frequency f,=1/T and the frequency range

< fO’ Mfo > 0.125 m— clevator
s rudder

» Assigning subsequent harmonics S

to the control surfaces 0.1
» Determination of amplitudes

=
=
L‘.]
Ln

based on the power spectrum
» Homogeneous spectrum:

power spectral density
=
(=
iLh

0.025
» Non-uniform power spectrum -

harmonics

Ay = Aj\/pPx

\Warsaw University
of Technology
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Multisine 30

M
- (2mkt
— Z Aksm( - + (pk>

> Slgnal optlmlzatlon selection of phase shift angles P

» Relative Peak Factor RPF | | T
- ameasure of the effectiveness s M | !
of the control surface deflection = Y " ' u| B
max(u) —min(u) = o I | |
RPF = | |
Zﬁrms(uj) O | nﬁ ui -
» Initial values of phase shifts éﬁ 0 'J i | 1
e Schroeder's formula — M‘ V‘m ML
© o LII 1 || 11 i e
» Shifting the signals along T TN Ih
the time axis so that the S J
flight control deflections start = e |\ N Y‘ B
and end at zero @ | 1 | \

0 10 20 30 40
Warsaw University time [s]
of Technology
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Optimallity criteria RY

» Fisher Information Matrix - measures the amount of information that
observable random variables carry about unknown parameters that
describe the system

_ _|[9InL(@|Zz)] [0InL(O|Z) 04InL(0|z)
FZE“ H } E[_ 00007

> Likelihood functlon
L(0|z) = p(z|©) f p(z|@)dz =1
. Multivariate normal distribution (for all time points)
N
~N/2 1
p(z|®) = ((2m)"v|R|) exp| —3 [z(ty) — y(t)]"R™Hz(ty) — y(t)]
k=1

e Covariance matrix

2 —_
01 0102012 U1Uny,01,ny

2
O-0 o cer 050
R = 201021 2 2 nypz,ny

\Varsaw University L 2
of Technology _O-le 01p ny,1 O-ny 02pP Ny,2 O-ny
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Optimallity criteria 32

» Fisher Informatlon Matrix sensitivity form

£~ Z [aY(tk) [aY(tk)

00

> Obtained for the a-priori model and known (initial estimates) model
parameters

» Depends on the model response y
* Depends on the output signals

> Task- find the control that maximizes F (maximizes information)
» Estimates uncertainty minimization

> Select the optimality criterion
» A - optimal - minimizes trace of the Fisher inverse
» D - maximizes determinant
» E - maximizes largest eigenvalue
» L - A-optimal with weights included
> ...

\Warsaw University
of Technology



Measurement

» Linear and angular velocities

» Linear and angular accelerations
» Aerodynamic angles

» Attitude angles

» Flight surfaces deflections

inputs signals

© P. Lichota, 2023/24

33
| |
WY

Optimal | Aircraft | Register flight

Stop
criterion

Parameter
estimation

1Update

Simulation

Validation ‘

\Warsaw University
of Technology
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Measurement 3/

» Whittaker-Nyquist-Kotelnikov-Shannon sampling theorem

» To faithfully reproduce a continuous signal from discrete signal
samples, digital sampling rate f, must be greater than twice the
maximum frequency content f__ in the analog signal
fS= meax

e In practice, sampling at even higher frequency
f=25f _

 For an scaled object:

fmodel = ﬁfaircraft

\Warsaw University
of Technology



© P. Lichota, 2023/24

b

4
[ ]
)\

Measurement

» The sampled signal contains high frequency components that may be

mistakenly interpreted as samples of a lower frequency signal (aliasing)

1
D

05 -
1

& fi o

o

f

4
» The need to use anti-aliasing filters before sampling

3

2

1

0

-offs

» all measured signals have the same time delays

=5 fmax

f. /5
» Using filters with the same cut

f,<f,/2
» In practice, the cut-off frequency is even lower:

» Cut-off frequency f, less than half f,
f, <

\Warsaw University
of Technology
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Measurement 36

» Raw data recording is recommended

» Flight parameters that are significant in aircraft system identification
should

have the same sampling frequency

> Flight parameters that are less significant and change slowly in time
(e.g. altitude) can have smaller sampling frequency

> If it is possible all signals should be time synchronized

» Signal to noise ratio should be at least 10:1

» Sensors should be calibrated in laboratory and on the object
» Data reduction should be avoided during signals recording

» Data recording process should be observed online in order to check
the correctness and completeness of the registered data

\Warsaw University
of Technology



Flight controls deflection

» Potentiometers - adjustable voltage dividers with the ability to
change the resistance using the slider

» Output voltage proportional to displacement or rotation angle

© P. Lichota, 2023/24

37

L U — U Rz P t'L fer R
R., out — Rl + RZ o—mv;mmmwmww %
U . ' « Vc.u; F v Uout — UE
1 R = pSl ’M'
Rz U-::l-ut R . S ZT[ re e
' - P3600 L Uout = U
”? i Omax

Prisnlirieshs

» LVDT/RVDT (Linear/Rotational Voltage Differential Transformer) -

output voltage

Changes in the intensity of the
magnetic field inside the winding
caused by changing the position
of the ferrite core

\Warsaw University
of Technology
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4

Accelerometers J8
» Inertia force measurement ) Frame
» Model: Mass - Damper - Sprin g |

Newton 2nd law of];I)notioR N 21N Dlamp:;

non-}.nertlal frame \j;, OO0 Proctmess ||

d =X Sensitive axis ; v

Mx = My + Cy + Ky ;,; *:TF.F.?. -

steady state: y =y =10 -

K X
a=_ -IIIIII?I‘|I7IIT-.II+

» Almost perfectly linear, low bias

» It alsorecords structural and engine responses
» Need to remove noise from signals

» Tri-axial accelerometer
> Placed at the center of mass,
» The sensor axes coincide with the Oxyz system axes

» Sometimes additional accelerometers are used, e.g. in the cockpit
- more SysID possibilities

\Warsaw University
of Technology



Angular rates

» Rate gyros - measure the angular velocity of an

» The rotating disk can only tilt by 6 angle

» Rotation around the vertical axis causes
recession - inclination of the disk by 6
ﬁ"otation of the spin vector by QAt)

H=I1w

AH = IoQAt = H = [w

» Springs and damper attached to the
horizontal axis

. . BO+ KO K6
H = BO + K6 0= ~ —

lw T lw

> Almost perfectly linear (B=0), small bias

» Theoretically, they can be mounted anywhere
on the object

» Practically - the object is not a rigid body
and the three gyroscopes are mounted at CG

\Warsaw University
of Technology
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39

a &
object gl‘ I[ls

— l
!
| |
: l
| Sensor output
~
~ -
N ' 1 measureme
~ I Spin’
-~ ' \
A motor
~
-
~

() \J (sensor input or measurand)

IFUT
AxXld
RESULTING i

1 LS. FLULL O THE SPRING
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Aerodynamic angles . sgeorauc /)

» Differential-Pressure Tube u > ' pressure ports

> Five holes in the head Alr flow
2 ports for a measurement,
2 ports for f measurement,

e 1 port for measuring
total pressure p,,

» Side of the tube - static pressure
measurement ports p,
Kapdyn K 3P dyn dyn tot stat 2

» Sensor installed in front of the object
» When this is not possible, the tubes are installed, e.g. at wingtips

» Calibration is necessary because the sensor is not mounted at CG:
scale factors K(Ma), bias, time delays

\Warsaw University
of Technology
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Aerodynamic angles A

» The Differential-Pressure Tube on the boom significantly increases
the detection of objects in stealth technology

> FADS (Flush Air Data System)

» Multiple pressure ports placed at the nose of the aircraft to
measure local pressure distribution

* One port centrally located
* The remaining ports are placed radially
 Port locations are selected optimally for each aircraft

« Angle of attack, sideslip and linear speed determined using
special algorithms

\Warsaw University
of Technology




Aerodynamic angles

» Static pressure ports calibration

© P. Lichota, 2023/24

47

» Static pressure sensor placed behind the object in the undisturbed flow
» Long tube equipped with static pressure ports
» Conical, perforated canopy generating drag force to stabilize the tube

» A mechanism for extending/retracting the sensor is required to
prevent damage, e.g. during take-off (not always possible)

> There is a risk of dynamic instabilities occurence (difficult to predict)
» Calibration requires very precise piloting

\Warsaw University
of Technology
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Aerodynamic angles /3

» Static pressure ports calibration

» Flight of an aircraft at a constant speed at a constant height past an
observation tower

» The height of the tower and its distance from the center of the
runway are known

» Registration of the geodetic position of an object using a camera

» Calculation of the height of the object relative to the runway based
on geometric relationships

» Conversion of altitude above the runway into static pressure

» Sensor calibration ”

\Warsaw University
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Other quantities v/

Attitude angles

» Measured angular velocities integration (usually)
» Attitude angles are of secondary importance

Angular accelerations

» Angular velocities differentiation
» Rarely used in SysID

» They contain more information about higher frequencies than other
signals - can improve Sysldconvergence

Engine parameters

» Engine mathematical model provided by the manufacturer is used
» Engine parameters are not typically the target of Sys-ID

Yokes
> Yokes characteristics used only for control systems modeling
» They are not used in the Sys-ID process
> In Sys-ID control surfaces deflections (not the yokes) are used as inputs.

\Warsaw University
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Method AL

» Method class
» Equation error
» Output Error
> Filter error
» Heuristics

» Domain: time/frequency

» Offline/online
Optimal | | Aircraft | Register flight

inputs signals parameters

Update

Simulation

\WVarsaw University ] .
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Equation error methods ¢

» Cost function defined as a direct relationship between inputs and outputs
is minimized
> No integration is required (unstable systems)
> Data partitioning is possible (long-lasting manoeuvres)

» All dependent and independent variables must be measured
» Data pre-processing is required
* Independent variables not always are directly measured

 Systematic errors (bias, scale factors, time delays) should be
removed

Input signals

Aircraft A Registered

[ object response

Measurement noise

Mathematical
l model

Parameter
estimation

\Warsaw University
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Ordinary Least Squares 4/

> Oldest estimation method (Gauss, 1795)

» Ideal measurement of the independent variables X
(not corrupted by errors or noise)

» Independent variables are not correlated

> Errors (residuals) € of the dependent variables Y:
» Uncorrelated with independent variables
» Uniform scattered with relation to the independent variables

E A
668765 608 68Dy,
o 9 o000 %. _©
...9.00....09 0.0 . 0.00.0 ___
:
X;

» White noise with zero mean and variation o
» Only linear systems can be analyzed

\Warsaw University
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Ordinary Least Squares /48

» Linear equation describes the system
Y =X0 + €

» Sum of the squares of the resiudals is minimized
to obtain the estimates

1 1 1
1(0) = 52 ?(k) = 5 "2 = —[Y — X6]"[Y - XO]
k=1
> In result
6 = (XTX) 'XTY

» Estimation accuracy
> Error covarinace matrix

P=c2(XTX) "
N
1 _
62 = N 1(Z;[Y(tk) — Y(tk)]2

\Warsaw University
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Ordinary Least Squares A

» Linear equation describes the system
Y =X0 + €

» Estimates
6 = (XTX) 'XTY

» Matrix equation is used to find the estimates
» Unknown parameters can be find in a single step
» A-priori values are not required
» Integration is not required

> Biases can be included by introducing additional independent
variable as a vector with all elements equal 1

» Equations for independent variables can be solved separately
(this is a better approach because in other case some coefficients
can be physical meaningless)

\Warsaw University
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Ordinary Least Squares (Freq. domain) ")

> Discrete li"\lourier Transform

() = z x(ty.) exp(—icwkAt)
k=1
» Linear equation describes the system

Y=X0O+¢&
« The cost function is analogous to that in the time domain
1. = o~
() =5 [Y - %0]'[Y - X6]

* Asaresult
0 = (Re(X'X)) Re(X'Y)
» Inability to identify aerodynamic derivatives biases, e.g. CLO

» Subtracting flight parameter trim point values from their
perturbed values is required

» Analysis only in the selected frequency range - filtering noise
outside this range

\Warsaw University
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Weighted Least Squares H7

» The residuals € dispertion for the dependent variables Y is uneven in
relation to the independent variables

€ A
......................... 55T
"""""" O O o) 5
09 0o '®) o O O - o o
0. 000 ~ 50 o s o o
-------------------- 9.....00. 0 o
.
Xi

> Introdu%tion of the weight coefficient matrix w,

1 2 _1 T _1 _ T _
1(0) Zkzlwks (t) =5 €"We = 2 [Y - X0]'W[Y — Xe]

» Asaresult
6 = (XTWX)  XTWy

» Weighting factors are usually selected to be inversely proportional
to the variance of the independent variables

\Warsaw University
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Total Least Squares Y,
> ‘I&iluding noise with zero mean value p also in independent variables

.
X;
» A linear system described by the equation
Y=X-pno +c¢

» Can be expressed as

Q)
[YIX] —[ulell| = | =0
« Estimates are obtained by singular value decomposition
Vv V.
vIX] = [U ] [ 11 12]
[ | ] [ S 0 ZN V21 sz

A

0= —V12V22
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Instrumental variables Hha

» Introducing instrumental variables Z to account for correlated noise in
the independent variables p

> Instrumental variables selected to be (at the same time):
» Highly correlated with the independent variables
» Uncorrelated with the residuals

» Methods of selecting instrumental variables:
» Filtration based on a-priori estimates or estimates obtained from OLS
» Time-lagged independent variables used as instrumental variables

» Model parameter estimates:
Q Ty) 17T
0 =(z2"xX) 7Y

\Warsaw University
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Independent variables colinearity W/

» Independent variables colinearity detection
» Information matrix eigenvectors and eigenvalues

T - eigenvectors matrix

Tv _ ~1
X' X =TAT A - eigenvalues A diagonal matrix

« Very small eigenvalues of the information matrix
e Matrix conditioning index much greater than 1

A
¢ _ Pmaxd
A
» Singular value decomposition of the independent variables matrix
X =0zv Y. - diagonal singular values o matrix
e Matrix conditioning index much greater than 1
o
C; = max
i

\Warsaw University
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OLS - Mixed estimation Hh

» Directly adding a set of known a priori values of estimated
parameters to the set of measurement data

0 =A0+¢ ®, - a-priori values vector
E{T{'} = o2W A - marix with known constants,
E{Q} = 0 based on a-priori knowledge

» New problem formulation
Y] X £
o, =[alo*[2
* Model parameter estimates:

6 = (XTX + ATW2A) (XTY + ATW-1)@,
» Accurate knowledge of 8,and W is required

> Includmg prehmmary knowledge allows to reduce estimates
variance, i.e. mixed estimation is an indirect way to solve problems
with correlation between independent variables

\Warsaw University
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Nonlinear least squares b6

» Types of nonlinearities present in the model:
» Linear model parameters and non-linear independent variables
y = 0:X; + 0,%X5 + -+
» Evaluating non-linear independent variables

and treating them as pseudo-signals

X; = X3

y = 01X1 + 0,x5 + -+
» Nonlinearities in the model
e Cost function
y = f(x,0)
e [terative algorithm to minimize the objective function

(determine estimates) is used
N

1(©) = ) [y(t) — f(x(ty), )]

k=1

\Warsaw University
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Data partitioning W
» Used to analyze long-lasting maneuvers

» Selecting of time windows in which the estimated parameters
values are the same (i.e. equivalent flight conditions)

» Combining time windows does not require bias estimation
(unlike in the output error and filter error methods)

80
%“55- /\/\ o
= W .
g >0 \ /2|5 4 56 o<
2{] L] L] Li L ] i L] L] L
0 Time, s 100
55
50 A : D
55 ] 2 3 45 6
ww_’.\
Warsaw Univ Sﬂﬂ . 'Time 4.«,' . 0
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Model structure modification Hel

» Regression analysis
» Independent and dependent variables are uncorrelacted
» Independent variables are uncorrelated with each other

» Methods for determining model structure (linear regression)
» Forward selection
1. Assume that the model structure contains only biases

2. Calculate correlation coefficients between independent
variables and each dependent variable

3. Include the independent variable with the highest
correlation coefficient in the model structure

4. Complete the model with additional independent variables
until the t statistic is greater than the assumed threshold

» Backwards elimination
» Stepwise regression

e Combines the features of forward selection and backward
elimination to select the best set of independent variables

\Warsaw University
of Technology
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Stepwise regression HY

1. Calculate correlation coefficients between independent variables
and each dependent variable

» Include the independent variable with the highest correlation
coefficient in the model structure

2. Calculate partial correlation for the remaining variables
» Include the independent variable with the highest partial
correlation in the model

3. Calculate the F (or t) statistic for all variables included already in the
model and remove those with statistics below a specified threshold

4. Return to step 2 until none of the remaining variables lead to an
improvement in the model

» The coefficient of determination R? can also be used for elimination

» R?improves when independent variables are added to the model
(even if they do not affect the object)

* [t is better to use the adjusted coefficient of determination AdjR?

\Warsaw University
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Output Error Method q),

» Minimizes the error between the model response and the measured
object response

» Most popular method
> No process noise (e.g. turbulence, gust)

» Difficulties with application for unstable systems
(when performed in time domain) - integration problems

» A-priori knowledge is required ,
Measurement noise

Measured

: + .
Input signals object response
Aircraft
l A-plrlorl Model
vaiues response +
Mathematical
model
Pa;amejcer Output
estimation erTOr
\Warsaw University Parameter
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Maximum Likelihood Principle 07

» For a deterministic system a set of parameters that maximizes the
probability
of observing measurements is searched

O = arg (mgxp(z|@))

» Conditional probability
» Multivariate normal distribution

» Output errors are independent for every time point

N
1

1
p(z|0®) = —exp| —= ) [z(ty) — y(t)]"R™Hz(ty) — y(t)]
Jm)™|R] k=1

J(©) = —InL(0|z)
» Cost function - negative log-likelihood
L(@|z) = p(z|©)

\Warsaw University
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Maximum Likelihood Principle 02

» Cost func’lc\lion minimization
1 N
J(©) =5 ) [2(t) = (6] R [2(t) — y(6)] + 5 Indet(R)
k=1

» Unknown %ovariance matrix

. 1
R(O) = kzl[zak) — y(©01[2(t) — (6"
« Cost function
J(©) = det(R)
» Optimization algorithms

> Gauss-Newton 6y(tk) L [9y(ty)
0; = 0;_1 — F_1Gj_; k= z 00

» Levenberg-Marquard
0; =0;_1 — (F} + AI)Gi_,

g1 i z [‘Wk) 2t — (6]

\Warsaw University
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Maximum Likelihood (Freq. domain) 63

» Measurements analysis in the frequency domain - linear system
» Discrete Fourier transform |

X(f) = Ex(tk)AW -ik ”

A=1 W = exp(i2m/N)
» Chirp-Z transform

A= exp(i a)minAt)
W = exp(i AwAt) p ' i :

» Possibility to define the range of analyzed frequénmeﬂg e
 Ability to select frequencies for analysis

» Minimization of the objective function
m

1
10 =5 ) [#(w;) = §(w))] 'S [E(w;) - §(w;)] + 7 Indet(S)
=1
» Power spectral density of measurement error

$(0) = NZ[Z(‘U]) ¥(w;)][Z(w;) - Y(“)J)]

\Warsaw University
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Filter Error Method 6/

» Process and measurement noise are included
» Unstable systems can be estimated
> A-priori knowledge is required (also for process noise)

» Good match between model outputs and measurements even
for wrong structure/estimates

» Problem with combining multiple manoeuvres

JProcess noise Measurement noise
+
Input signals Aircraft -+
Registered
object response
A-priori
values
Mathematical Response
. . +
model brediction - e

Parameter States

estimation estimation -
Wu_rsuw University Sensitivities Ei‘r e]]:f"
of Technology Up date O

parameters




© P. Lichota, 2023/24

Filter Error Method OhH

» Numerical integration
» Euler
» Runge-Kutta 4th order
> ...

> Discretization and application of state transition (for linear systems)
AX(tyy1) = PAX(tyg,1) + PBAU(ty) + Wb,
Unforced cc;mponent Forced c.omponent

e State transition matrix
D = AN

e State transition matrix integral
At

‘P=f eATdt

0
» Using Taylor's series expansion
® ~ I + AAt + A2 At + At? A3
\Warsaw University - pA Y =~ JAt + A? -+ A? + --.
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Kalman Filter 66

» Linear system

x = Ax(t) + Bu(t) + Fw(t) + by, x(ty) =0

Distribution matrix:;
y = Cx(t) + Du(t) + by F - Process noise

z(t) = y(ty) + Gv(t,) k=1,.,N G - Measurement noise
» Process noise v(t) and measurement noise w(t) have normal
distribution with zero mean

» Process noise and measurement noise are uncorrelated
» Process noise and measurement noise are mutually independent

» Prediction step
i(tk+1) — q)ﬁ(tk) + lPBl_l(tk) + ‘Pbx

y(tx) = CX(tx) + Du(ty) + by
P(tis1) = PP(ti)@T + AFFT

» Correction step
R(ti) = X(ti) + K(ti) [2(t) — §(ti)]

\Warsaw University
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Kalman Filter

k=k+1

Prediction step
P(tx+1) = PP(t) @' +Q
X(tk+1) = PX(ty) + PBu(ty)

P

lfco, P, - Initial values

Covariance matrix:
R - Measurement noise
Q - Process noise

y(tx) = CX(ty)

X(ty) = X(ty) + Kt [2(t) — §(tio)]
P(ti) = [1 7 K(ti) CIP(ty0)

Correction step

K(t,) = P(t)CT[CP(t)CT + R] ™

© P. Lichota, 2023/24

Dll(tk)

4

Update
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Kalman Filter 68

» Cost function

Nn
<@>—ZZ 2(t3) — (6] TR [2(t) ~ §(6)] + ~2¥ In2n + > Indet(R)

> UIIkIlOWIl measurement error covariance matrlx

R(0) = NZ [2(t3) — 761 [2(t) - 76"

. Statlonary fllter
e Kalman gain matrix
K=PC'R™!
» Error covariance matrix P is obtained by solving Riccati eq.:
AP + PA" — A—tPCTR‘1CP +FF' =0

» Optimization algorithm - Gauss-Newton
» Measurement noise distribution is physicaly significant for KC <1
o If the condition is not met, optimize with constraints
 Eliminate possible correlation between F and R by correcting F

\Warsaw University
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Extended Kalman Filter H6Y

> Allows to identify nonlinear systems
> Prediction step ~ k#?
K(teer) = R(0) + | RO, 600, 0)dt %(to) = X,
» Correction step  tx

y(tx) = g(X(ty), u(ty), ©) P(ty,,) = ®P(t,)PT + AtFFT

() = X(t) + Kt [z(t) — Ft)] Pty = [1- K(t) CIP (1)
« Obtaining the state and output matrix - linearization at the

equilibrium point
fi(Xo + 8Xiei, Uy, ©) — f;(X, — 8X;e;, Uy, O)

A:: ~ ] ) ] ) e, - a vector containing
1) ZSX]- 1in the jth row and
zeros in the rest

Co: ~ gi(XO + SXjej,Uo, @) — gi(XO — SX]e]’ Uo,@)
v 26X

 Equilibrium point- updated every iteration

\Warsaw University
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Online system identification /()

» Acquiring instant knowledge about aircraft for adaptive control and
reconfiguration

» Verification of the collected data quality and modification of planned
maneuvers during the flight

» Recursive methods
» Simplifications of more complex offline methods
» Allow to identify systems with time-varying parameters
» Do not require large resources in computer memory

» Typically have slow convergence, making them unsuitable for fault
detection

» Convergence can be improved by introducing a forgettin% factor,
but this increases sensitivity to noise - longer data sets allow noise
to be noticed

> Continuous (uninterrupted) identification may cause numerical
problems - e.g. insufficient information during steady-state flight

» Collinearity of state and control variables is not checked

\Warsaw University
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Recursive Least Squares /7

» Estimates updated while recording measurements
» Based on samples collected at given time period <0; t >

~ -1 —1
O = (XpXy) XpYe P = (XiXy)

» Based on samples collected at given time period <0; t +1>
Ot = l)l<+1Xil<1+1Yk+1

k — k —
i XE+1 1 Yk+1

e Therefore
Opr1 = Pyt (Xp Yy + Xie41Yies1)

e Finally
O = O + Kk+1(Yk+1 — XE+1@1<)
PyXy+1
Kii1 =

T
1+ Xk+1Pka+1

_ T
Pri1 = Pr — Ky 1 Xg 1 Py

\Warsaw University
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Recursive Least Squares /2

» Faster adaptation to environmental conditions

» Introduces a weighting factor A € <0;1> to determe the significance
of previous measurement points 10

—=lo0s  7=0970| .
= 0.8[|—17=0.990 _E‘fg-ggg----% --------- oo
> Cost function =) 7=0980 ~ 77 ' '
1 k E, A S co R SRR SRR
—1 . 00,
(@)= ) AKIg2(j) =
2 £ 04
i=1 =
; DE __________________________________________________________
» Updated estimate at time t, +1

oy ~~ —~ D_D H ! '
— T
®k+1 — @k -+ Kk+1(Yk+1 — Xk+1®k 0 200 400 600 800 1000

points number
PrXi+1

T
A —+ Xk+1Pka+1

K1 =
Pyi1 = T (Py — Kyy1Xpe 1P
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Locally Weighted Least Squares /3

» Removing points from the measurement data set while the set is
being collected

6 = (XTWX)  XTWY
» Weighting matrix

d;
Wi = exp| — 52

» Norm 19f the difference between the current point and i-th one

2
di = Z (xij = %nj)
=1
» Time-varying Gaussian window width k

» Shorter window (smaller x) - greater influence of newer time
points

\Warsaw University
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Locally Weighted Least Squares /4

» Removing points from the measurement data set while the set is
being collected

> Oldest
» Containing the least information

* Removing the measurement point (row H) after including
the weights, which has the smallest contribution to the trace
of the inverse of the information matrix

wx =2

« Matrix decomposition P=7Z"Z4+H'H
P=USV"'
* Deleting the row with the maximum F value

Ng 2,2
2 1Cii/5n'
ZJ 1 IJ/S]J

M
|

F, = HV

\Warsaw University
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Recurisve LS (Frequency domain) 7%

» Estimats updated during measurement registration
> Based onﬁamples collected at given time period <0; t, >

% () = 2 x(ty.) exp(—iwkAD)

» Based orll(zslamples collected at given time period <0; t,, >
N+1

Ries1 (@) = ) X(teps) exp(—io(N + DAY =
k=1
= X () + x(trs1)exp(—iw(N + 1)At)
* Model parameter estimatesx

Ors1 = (Re(xk+1xk+1)) Re(Xk+1Yk+1)

> Introducing the possibility of placing greater emphasis on current
measurement data requires the use of a weighting factor or weighting
matrix

\Warsaw University
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Extended Kalman Filter /6

» Reformulate the problem of estimating model parameters as
the problem of estimating state variables

Xa = [xT @T]T
» Therefore
Xy = f(xa(t): ll(t)) + Fawa(t)
Ya = g(xa(t): u(t))
Z(tk) — Y(tk) + GV(tk) k=1,.,N

» The prediction and correction steps are given in the same way as in

the extended Kalman filter. However, due to the change in the
estimated values ,

At
Pq (ter1) ~ T+ Ag (i )AL + AZ (tepr) — + -

PJ(tk+1) = @, (tk+1)’pa (tk)q)a (tk+1)T + AtFaFET

A,(ty) = afa(xaa(;)’u(t)) C.(t,) = aga(xa(t)»u(t))

Xaq=Xa(ty)

0X,

Xa=Xa(tyk)
\Warsaw University
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Unscented Kalman Filter /7

» Highly nonlinear systems

> Uses sigma points to transform mean and covariance (expressed as
mean and covariance samples)

Reality Extended Unscented
Kalman Filter Kalman Filter
"~ sigma
c-—
@-— mean S ’ points
covariance L o
J - linear .
B propagation norlnear
Jyf(?i) J propagation
mean mean

real v EKF ‘ UKE
mean 3
covariance \© covariance

real EKE / < UKF

covariance
\Varsaw University transformed /O
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Unscented Kalman Filter I /8
IR |

N
5 i
Weighted
f ( ){) > sample >
3/: covariance

- Bt

— P
Py Jmh v v { )

I . =[x x+nP. x-p/P.]

» Choice 2n,+1 points. sigma, n, - number of state vector elements

> Calculate for each element of the state vector v+/Px ,—V+/Px
> Create for a set each element of the state vector:

Xi = [X X+y /Py X—VyyPy
» Calculate a nonlinear function f(x) for each set
» Calculate a weighted sample for mean and covariance

I+

\Warsaw University
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Unscented Kalman Filter /9
llnitial values g (t,), ’Pa (t,)
Evaluate sigma points ¥, (ty)

Prediction Correction
Evaluate Perform Unscented Transform
¥a(t), X, (t), P, (ty) Based on mean and covariance from
unscented transform evaluate
[ SS—CHE A AC
Update l Xa(tio)
» Unscented Kalman filter needs to be specify
» Scaling factor

A= a(ny + ) —n,

» Weight matrix for mean W™ and covariance W¢
Wh=1/(ng+1) WPR=A/(ng+A)+({1—0a?+p)
WP =WF =1/(2(n, +1)) i=1,-2n,

\Warsaw University
of Technology



© P. Lichota, 2023/24

Artificial neural networks 1),

» Mathematical structures inspired by the way in which human brain
works

» Only input signals are required to obtain response of the analyzed
object i.e. no model structure is assumed (behavioral models)

> Allow to identify complex and hlghly nonlinear phenomena e.g.
1c1n% lift coefficient 1.6,
stall hysteresis |

» Obtaining model
parameters requires
additional effort

» Allow to obtain model U
response immediately
but their learning
is a long-term task

» No integration is required

> A learning set must be
provided

\Varsaw University 4 2 0 2 4 6 8 10 12 14 16 18 20
of Technology . dﬂg
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Artificial neural networks Y

» Neuron - electrically excitable cell capable of collecting, processing
and transmitting electrical signal if the input signals combination is
above a specified threshold

» Dendrites - neuron inputs

» Dendrite branches - ends of dendrites, place in which signals are
amplified or reduced

» Nucleus - place in which neuron essential processes are done
(amplified/reduced signals are summed)

» Axon hillock - place in which output signal is processed

» Axon terminals - neuron outputs
'a axon
I erminals (5)
Q )
hillock (4) ’
- & o) &

nucleus (3)

<5\
Y

dendrites (1)

dendrites
branches (2)

\Warsaw University
of Technology



© P. Lichota, 2023/24

Artificial neural networks $2
» Neuron in artificial neural network
bias
U,
U, -
HX)—y
U3 summation  activation output (5)
: : (3) function (4)
u, @
> Winiril%plpl%%(clz)ess weights (2
» Activation function:
» Unit step
» Linear function v;
> Nonlinear function e.g. hyperbolic tangent fj(x;) = tanh (31 xi)
\Warsaw University Y - Slope

of Technology



© P. Lichota, 2023/24

Artificial neural networks 33

» Unidirectional - one-way signal flow from input to output

o
9
SO<2
“W“

L

input hidden output
layer layer layer

neuron

inputs
outputs

» Recursive - there is feedback between input and output

» Radial - neurons in the hidden layer implement a function ¢ that
changes radially around a selected center c and assumes non-zero

values only in the vicinity of this center

o) =gllu—cl)  yi@ =) wip(llu—cl
> . i=1

\Warsaw University
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Artificial neural networks 8/

» Training - to determine the weights
> Backpropagation method (with recursive change of weights)
« Weights selected to minimize the squared output error

1
E(ti) = 5 [2(t) — u(t)] [2(t) — u(tio)]
 The fastest descent method

0E _1 :
Walti) = Wa(s) + (- 1~ Learning
5%

W, (tgs1) = Wo(ty) + UGZb(tk)uI (ty)

e (t) = f'ly(t)][z(ty) — uy(ty)]
Wi (tk1) = Wy (tg) + Uelb(tk)ug (ty)

U L| y U ¥ U,
k -7, | 1>|f '>|Wi j_} f 2 Vo

f 4O, f

\Warsaw University
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Artificial neural networks g

» Backpropagation method with moment of inertia Q
» Small values of learning rate result in very slow convergence

» High values of learning rate may cause sudden jumps between
weight values (especially when the cost function has numerous
local extremes)

> Solution - introduce an additional coefficient causing the step to be
performed in the averaged direction based on the weight values in
previous iterations

Wi (tir1) = Wy () + peqp (tdug () + QWy (t) — Wy (te—1).

W, (tg1) = Wy (ty) + pegp (tug (t) + QW () — Wy (te 1),

» The introduction of the moment of inertia coefficient Q€(0;1)
increases the learning speed from p to approximately u/(1- Q)
without causing sudden jumps in weight values

\Warsaw University
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Modified backpropagation method 86

» Faster convergence when compared to the classic backpropagation
method or the backpropagation method with moment of inertia

> Less sensitive to the settings of the artificial neural network, e.g. the
activation function y slope coefficient, weight coefficients initial values

» Itintroduces forgetting factors A, A, to increase the relevance of
newer data

» Minimizes the mean squared error for the outputs from the summing
block

» Introducing a Kalman filter in each layer to determine the
weighting factors

Wi (tr1) = Wy (ty) + peqp () K7 (ty)
W, (tr1) = Wo (ty) + [d(ty) — y2 (6 ]1K3 (ty)

\Warsaw University
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Modified backpropagation method 87

» Kalman gain

B D1 (ti)up (ty)
Kalti) = A1 + ug (t) D1 () ug ()
K, (t) = D, (ty)uy (ty)

Az + uf () Dy () uy (ty)

» The inverse of the correlation matrix for network training dataset
T

Dy (tg—1)—Ka(tg—1)uo(tx—1)P1(t—1)

D, (ty) = 0
D) = Dz(tk—1)—Kz(tk_i)2u$(tk_1)D2(tk_l)

» Output of the summation block

- 1 1+ Z(tk)
d(tk) — ;ln (1 — Z(tk)>

\Warsaw University
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Artificial neural networks 88
» Typical neural network settings for Sys-ID
Network parameter Value
Hidden layers number 1
Neurons in hidden layer number 5-8
Range for data scaling from -0.5 to 0.5
Activation function slope <0.6; 1>
Learning rate <0.1; 0.3>
Moment of inertia <0.3; 0.5>
Weights’ initial values <0.0; 1.0>

* Data scaling - all input signals have the same impact on the final
result, leading to improved convergence

» Model parameters determination
» Directly impossible - weights have no physical significance
> Perturbe the selected input signal (e.g. B) twice and observe the
output signal (e.g. C))

Wu_rsuw University - CI(B + AB) — CI(B — AB)
of Technology IB — ZAB
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Frequency Responses Analysis 89

» Frequency response

» Complex function given as a curve as a function of the excitation
frequency, e.g.

« Amplitude and phase characteristics
* Real and imaginary characteristics
« Amplitude-phase characteristics

» Describes the dynamic system under study using an equivalent linear
system that best reflects the relationship between the input and the
output

» It does not require preliminary knowledge of the mathematical model
of the tested object

» It can be used to identify unstable systems

\Warsaw University
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Frequency Responses Analysis (SISO) 90)

1. Remove bias and drift, then combine maneuvers into one record T
2. Filter data - elimination of potential aliasing of high-frequency noise

3. Divide the signal (t) into mutually overlapping windows w(t) of width
T,:, - reducing random error

W

S(H)

0 12Ty, To. 32T.. 2Tw. 52Tu 3T 72T
Calculate weighted response £(t)-w(t) (in each segment)

R

b. Obtain the transmittannce of the output and input signals (in each
segment) using Chirp-Z transform

c. Calculate rough estimates of the power spectral density in each segment

d. Calculate smoothed power spectral density estimates over the entire
time range (based on rough PSD estimates)

4. Calculate transfer functions and coherence

\Warsaw University
of Technology
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Frequency Responses Analysis (SISO) )1

> Smoothm% windows - reduce errors due to spectra leackage
typlcal effect for rectangular window)

Hectangular Window Hammlng Window

:z / /\ leackage .
300
a0l -main / - 1 =200} /\
200} lob 1 100}
WN\(JL i . /\

0 20 : 40 l?lL" a0 1040 120 0

side lobs

» Half-sine window - allows you to increase the accuracy of the
obtained frequency response when compared to usually used
Hanning window

_ £
w(t) = sin (n Twin)

» 50% window overlap reduces random error by 26%

» Further increasing the overlap increases the computational cost
and slightly reduces the error (29% for 80% window overlap)

\Warsaw University
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Frequency Responses Analysis (SISO) 22

» Window width selection

> At least two segments T, =0.5T,.. should be used to analyze the
shortest maneuver (that lasts 0.5T,,).

rec

» For longer windows, more accurate low-frequency estimates are
obtained, but random error increases

* for T, =1/5T; error less than 20% in amplitude and 11.5deg
in phase
TWin < min{O.STreC 1/5TF}

» The shortest time window should contain at least one decade of
bandwidth between f . andf__

TWin 2 ZO/fmaX

\Warsaw University
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Frequency Responses Analysis (SISO) 23

> Evaluatm% power spectra den31ty rough estlmates (in each segment)

Sxx() = ZIX(OF  Syy() == MOk Sxy () = = Ix*(f)Y(f)l

> Smoothecir power spectral den31ty estimates for the entire range
(averaging PSD rough estimates)

a _ n,. - numer of segments
Sxx(H) = ( ) z SXX k(f) U - coffecrtion factor

(for Half-sine window U=0.707)
. 1 -
Syy (f) = (Unr) Z Syy k(D

Syy () = ( )Z S,y k(D

> Frequency response and coherence
Sxy () By @
H(f) = Py () =
Sxx () [Sxx(D)]|Syy D

\Warsaw University
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Frequency Responses Analysis (MISO) /.

1. Evaluate matrix of cross spectra between each inputs and single
output and matrix of auto- and cross spectra between each inputs

2. Power density matrix correction using conditioned coherence
(removing correlation between inputs

. 2
Sxiy-xj (f)‘ x; —i-th inputs signal
)/fiy.xj (f) = — — x, - j-th output signal (i#j)
» Conditioned random error C. - window overlap constant
\/1 _ V>2<iy°x,- () C.=0.74 fo.r 50% overlap
e, (f) = C n, - numer of independednt
Xj\i /s ME time windows ng=T,../T,;,
1~ Y2,yx (D] y2nq e

AN

3. Transfer functions estimation: H(f) = Sxx(f)Sxy ()
> Frequency response analysis (MIMO)
1. Perform MISO analysis for each output signal

2. Selects the power spectrum calculated for the primary input

» For the secondary input, estimation is perfomed for the data
obtained from another maneuver

\Warsaw University
of Technology
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Frequency Responses Analysis 25

» Composite windowing (combining time windows of different width)
» Shorter windows - improved accuracy for high frequencies
» Longer windows - improved accuracy for low frequencies

» Combining of time windows of different widths allows to obtain
accurate frequency response at low and high frequencies

« Weighting factors evaluated for the i-th window and each

frequency
g; (f)
W = L —
min

» Evaluation of composite power spectra and composite coherence
estimates, e.g.

¥ WE () Sxx ()
Y WE ()

n, - numer of time windows

\Warsaw University
of Technology
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Frequency Responses Analysis 26

» Composite windowing (combining time windows of different width)

» The final power density estimates minimize the cost function
for each discrete frequency

) S o
® = z e ) o (Gre S RS RelS)
vy _ Re(Syy) |
- 2 \
1m(Syy,) — Im(Sxy,) (?ygyc - ?)?yi)z
T 3 + 5 — \
Im(Sxy) 72,

* The cost function is non-linear
e Optimization algorithm, e.g. Newton-Rhapson
« Composite power density estimates as initial values
» Final estimates of frequency response and coherence

Sxy. () Sxy. (O
He() = Sxx, () Py (0 = [Sxx. (D|[Syy. (O]

\Warsaw University
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Unstable aircraft identification V7

Closed loop identificatiom

-

* * * * I
Open loop identification k
|

| .
: noise!

5_|_, Controller u Aircraft Pz !
G(s) H(s)

» A controller is used to improve stability of an unstable aircraft

p
I

» Closed-loop identification
» Allows to obtain information about the aircraft with the controller
» The system is stable - no numerical problems due to integration

» Open-loop identification
» Allows to verify wind tunnel data and analytical predictions

» Provides more accurate models of the aircraft in order to modify
stability augmentation systems

\Warsaw University
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Unstable aircraft identification 28
noise
5_, Controller | u | Aircraft y %z
G(s) H(s)

» When the controller is known, it is possible to identify the aircraft
in an open loop by using a closed loop

» This approach is impractical

* [t requires detailed knowledge of the controller control laws
and the dynamics of the control system elements

* By suppressing motion, the controller drastically limits the
amount of information contained in the measurement data
(therefore, it reduces the accuracy of the estimated parameters)

» Feedback leads to correlation between input signals and variables

describing the aircraft motion

« The aircraft response passes through the controller and thus the
measurement noise present in it, acts as a stochastic input signal

\Warsaw University
of Technology
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Unstable aircraft identification V9

» Introducing controller causes correlation of independent variables -
possible problems with identification

» Changing the model structure so it contains fewer parameters
» Using a-priori knowledge for model parameters

» Planning experiments that allows for better excitation of the
aircraft (conveying more information about the system)

« Modifying the on-board computer to apply inputs by bypassing
thefstability augmentation system, e.g. directly to a given control
surface

Aircraft
H(s)

—p| Conrtroller
G(s)

 The stability augmentation system remains active and after
a certain time it will dampen the motion, however the initial
response of the object is different than if the forces were
applied in a conventional way

\Warsaw University
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Unstable aircraft identification 100

» Methods:

» Equation error - do not require integration, but problems due to
data collinearity (due to feedback)

> Output error - integration problems (time domain)
e Combined Output Error and Least Squares Method
e Equation decoupling Method
 Eigenvalue Transformation Method
» Output Error with Artificial Stabilization
e Output Error Method in the Frequency Domain
e Multiple Shooting Method

» Filter error method - Kalman gain matrix stabilizes numerical
solution

\Warsaw University
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Combined Output Error & Least Squares ()7

» Measurements of state variables that cause instability x  are used

(as in the Least Squares Method) instead of integrating those variables
(as in the Output Error Method)

» No need to integrate state variables that cause integration

problems
. u(t) A, - state matrix with
x = Agx(t) + [B Ay [X (t) parameters corresponding
m .
to stable state variables
A, - state matrix with
- u(t) parameters corresponding
y=Csx() +[D Cyl [Xm(t) to unstable state variables

» The number of state variables causing instability is usually smaller
than the number of other state variables

» The method works more like the Output Error Method than the
Least Squares Method

\Warsaw University
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Equation decoupling method 102

» Using measurements of the state variables that cause instability x
> Separating equations to integrate each state equation separately

. u(t) A, - state matrix containing
x = Apx(t) +[B  Agp] [Xm () on-diagonal elements of the
state matrix A
_ u(t) A, - state matrix containing
y = Cpx(t) + [P Cop [Xm (t) off-diagonal elements of the

state matrix A

» Measurements of state variables that cause instability are subject to
measurement noise

» The matrix with off-diagonal A, elements introduces process noise

* The method may cause numerical problems or affect the
accuracy of the estimates unless the measurement noise is small

\Warsaw University
of Technology
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Equation decoupling method 1038
» Example
X1 ][@11 Q12 Q13 Qs [X1] [b11 bi2]
Xo|[A21 Q22 Q23 Q4] |X2 b1 Daa[[U4]. — . _
X331 Q32 Q33 A3z4]|X3 T bs1 b3, uz" y=x Z=y+tV
X4] Qa1 Q42 Qg3 Qaq]|Xg by1 by
» Thus
X1 [a1x O 0 0 7[*1] [b11 b1z 0 agz a3 a14][%1]
X211 0 azx O 0 []%X2 + by1 by u1]+ az; 0 azz ax||2
x3[| 0 0 azz 0 [[X3 b3y bz |lU2l laz; azz; 0 azg||Z3
X411 0 0 O agellXal 1byy Dyl Qg1 Qap Qg3 0 11Z4]

» Measurements of state variables that cause instability are subject to
measurement noise

» The matrix with off-diagonal A, elements introduces process noise

* The method may cause numerical problems or affect the
accuracy of the estimates unless the measurement noise is small

\Warsaw University
of Technology
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Eigenvalue Transformation Method 10+

» Converting an unstable aircraft probleminto a stable one by using a
transformation in the complex plane (shifting the complex axis by o)

Im 4lm X(t) = x(t)exp(—ort)
éafter transformation 7(t) = y(t)exp(—ort)
' u(t) = u(t)exp(—ort)
Z(t) = z(t)exp(—ort)
w(t) = w(t)exp(—ort)
» After transformation V(t) = v(t)exp(—ort)
%(t) = (A — orDX(t) + Bu(t) + FWw(t)
y() = CX() + DU()  Z(t) = ¥(t) + GU(ty)
» Only the diagonal elements of A are changed by o
> If the state matrix A elements appear in the output matrix C, it is
necessary to perform inverse transform before calculating outputsy

» The function exp(- o;t) is decreasing - the transformed variables tend
to zero for long maneuvers

» The more unstable the system, the shorter the maneuver

\Warsaw University
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Output Error with Artificial Stabilization 1()!)

» Auxiliary matrix S is introduced to stabilize the solution
X(ty) = x(ty) + S[z(t) — y(tw)]

» When the stabilization matrix S is a zero matrix, it is equivalent to
the output error method

» When the stabilization matrix is an identity matrix and only state
variables are used as output variables, it is equivalent to the
equation error method

» Inclusion of the stabilization matrix introduces a modeling error
(reduces the accuracy of the estimates)

» The modeling error will be small if the elements of the stabilization
matrix are small

\Warsaw University
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Multiple Shooting Method 106

J{(t,ﬁj;@g/ hj(ﬁjﬂﬁj+1a@)

=T, 4 i+l Tn—In

» Dividing of the integration interval into subintervals

)

» Solutions to the problem within each sub-range
x = f(t,x,0)

x(1) = o
» The initial conditions o, for each interval are also unknown - they
should be included as estimates

» Moreover, the continuity condition must be met
hj(O'j, 0']'_|_1, @) - X(T]‘+1‘O'j,®) — O'j_|_1 ] o 1, e, 11 — 1

te 5 T+1]

» The multi-shot method is not the same as the output error method for
several data sets, because the conventional output error method does
not assume continuity between subsequent data sets.

\Warsaw University
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Flight Path Reconstruction 107

» Checking whether the measurements correspond to each other and
removing systematic errors

» Obtaining accurate values for state variables from other flight
parameters

U= —QW + RV — gsin® + a,
V = —RU + PW + gcos®sin® + y
W = —PV + QU + gcos@cos®P + a,

® = P + Qsin®tan® + Rcosdtan®

® = Qcos® — Rsin®d

¥ = Qsin®secO® + RcosPsecOd

h = Usin® — Vcos®sin®@—WcosdcosO

» Accelerations and a f%ular velocities are usually measured with high
accuracy (unlike e.g. tflow angles)

»Basedona,a,a,and P, Q, R:the U,V, W; ¢, 0,9 and h are estimated
along with the initial conditions (i.e. Uy,V,, ...

\Warsaw University
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Flight Path Reconstruction 108

> After estimating the state variables (e.g. using the output error
method), it is possible to estimate sensor models

Vm = Kyy(t — Ty) + by

» This mainly applies to aerodynamic sensors and requires the
estimation of scale factor, biases and time delays

» For linear accelerations and angular velocities

» Mounting errors are smaller than measurement noise - can be
neglected

» Scale errors are usually small and highly correlated with biases -
should be ignored

» Time delays are small - can be ignored

» Biases should not be omitted to avoid drift when integrating the
equations of motion

» The sensors location should be taken into account
ac =a0+ﬂx(ﬂxroc)+£xroc

\Warsaw University
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Flight Path Reconstruction 109

» Five-hole tube
Ve =y U2 + V2 + W2
» The pneumometric sensor is placed on the boom in front of the object

« The CG offset must be taken into account
VNB =VC +'Q'XFCNB

o If the boom is too short, the scale factors may depend on the
aircraft configuration

BNB = Kpasin + bg
Ugg(t — o) + VRp(t — Te) + Wit — 1)

\Warsaw University
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Flight Path Reconstruction 110

» Inthe FPR a,, a, a, and P, Q, R were equivalent to the input signals

> (Those) flight parameters measurements are subject to measurement
noise

* Thus, in the estimation problem, there is noise in the input signals
» Therefore, the process is stochastic

« When high-quality measurement sensors are used,
this noise is small - the process can be treated as deterministic

« An extended Kalman filter can be used to include noise
in the input signals

» An alternative to motion path reconstruction is the process of:
Estimation before modeling

\Warsaw University
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vy

Estimation Before Modeling 117

» A two-stage process in which, in the first step, smoothed state
variables time histories are obtained, and in the second step, model

parameters are obtained by linear regression

> Unlike FPR (also two-stage), linear accelerations and angular
velocities are also estimated
« Additionally, the normalized components of forces X, Y, Z
and moments N, M,N acting on the object are estimated

> This requires expanding the model by adding P, Q, R

U=—-QW + RV — gsin® + X
V = —RU + PW + gcos@®sin® + Y
W = —PV + QU + gcos@cos® + Z

® = P + Qsindtan® + Rcosdtan®
P=PQC;; + QRCy, + QC13 + L + NCy4
Q = PRCy; + (R* — P?)Cy; —RCy3+ M
R =PQC31y + QRC3, — QC33 + LC34 + N
® = Qcos® — Rsin®

\WVarsaw University LIJ - QSianseC@ + Reosdsect

of Technology h = Usin® — Vcos®Psin®—WcosdPcos®
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Estimation Before Modeling 112
» Mathematical model

x = f(x(t), x(t), ®) + w x=[X Y Z L M N

x =Ly +§ Gaussian noise with zero mean

y = g(x(t), ©) value € is obtained using a random

number generator
z(t1) = y(te) + v(ty)
» In this approach, forces and moments are not equivalent to the input
signals, but are modeled as a third-order Gauss-Markov process
Xi =Lixi +&() i=1,..6 . 8 (1)
> The model includes 18 additional state variables. Increased 0 0
computational complexity

» Problem can be simplified due to the large number of zeros

0
1
0.

» An extended Kalman filter is used to estimate sensor parameters and
directly forces and moments (instead of stability and control
derivatives).

\Warsaw University
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Mathematical model 113

» Simple e.g. minimum number of model parameters
» Convergence
» Less time required for estimation

» Complex - to imitate all significant features of the object

Optimal | | Aircraft | Register flight

inputs signals parameters

Parameter Stop +
estimation criterion g
1Update
‘ Simulation

\Warsaw University
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Mathematical model 11/

» Phenomenological - based on physical principles

» Most popular
» Parametric / Non-parametric

» Behavioral - maps the object response without any knowledge of
underlying physical principles
» Used in artificial neural networks

Phenomenological Behavioral
model model
Parameters Have physical meaning Have no physical meaning
Simulation Complex and difficult Fast and easy
A-priori knowledge Stored in the model Not required
Applicability range Large Limited

» White box - phenomenological model

» Black box - behavioral model
» Grey box - combines white box and black box models

\Warsaw University
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Mathematical model 1H

» Parametric - model structure is strictly defined and contains model
parameters

» State-space models
e Linear/nonlinear
e Continuous/Discrete
» Stochastic/Deterministic
« Stationary/Nonstationary

» Transfer function
» Non-parametric - model does not have a strictly defined structure, it
is given
as a curve, table
» Impulse response, Step response
» Frequency response
» Energy spectral density

\Warsaw University
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Validation 116

> Statistical properties of the estimates

» Standard deviations
e Relative standard deviations
» Correlation coefficients

» Analysis of the residuals
» Cost function

» Thiel inequality coefficient
e Error decomposition

» Autocorrelation of the residuals
» Power spectral density of the residuals

» Model predictive capabilities
» Inverse simulation

» Estimated model analysis
e Comparing outcomes with results from other sources

 Analysis of the outcomes physical sense (e.g. eigenvalues and eigenvectors)
» Proof-of-match

» Estimated model analysis in the frequency domain

\Warsaw University
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Residuals covariance matrix 117

» Fisher Informatllon Matrix Inverse

dy (ty) dy (ty)
P~ Z[ R |25

> Standard deviations

O'@l. = Pii
» Correlation coefficients between estimates
P::
J
Pee; =
P::P;:

iitjj
> Relative standard deviation

Orele; =

> Not all assumptlons are fully met (e.g. measurement noise
is not Gaussian)

» Estimates are too optimistic
e Introduction of a correction factor of 5-10

\Warsaw University
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Cost function 1718

» A direct way to assess the model quality

» Difficulties in defining a direct criterion for various models obtained
from identification

A\

Depends on the number of output signals and their units

A\

Too many parameters provide to much flexibility

A\

A low value of the cost function does not guarantee that all estimates
are accurate (a significant improvement in the fit of one output signal
may lead to a worse fit of the others if the overall cost function drops)

» Output signals standard deviations allow for error detection

N
1
0 = Nz[zi(tk) —yi(t]® i=1,...ny
k=1

o If ﬁultiple maneuvers are analyzed, this must be performed
separately for each maneuver

 Detection of poorly planned experiments
 Wrong model structure and improper identification method

\Warsaw University
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Theil Inequality Coefficient 19

» Greater emphasis on the correlation between measurement and model
response (when compared to cost function)

LRI —yor

\/% Y[z (0] + % Yk=1Lyi (ti)]?

> Value 0 - measurement and model response are identical (ideal case)

» Value 1 - The measurement and model response are completely
different

» In practice, values between 0.25 and 0.30 mean good model fit

» Thiel coefficient decomposition
» Systematic error UM
» Nonsystematic error U¢
» Ability to duplicate the variability in the true system U>

\Warsaw University
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Theil Inequality Coefficient

» Systematic error UM

UM = (Zi — §1)° )
\/ EONECRI LR 9N (S IR

» Nonsystematic error U¢
4 2(1 = p;)oy, oy, 5y =

i p—
1 1
JEEL 0 + 2 2N (0P
» Predicting capabilities U>
2
US (O-Zi B O-Yi)

oo + A5 @y

» The sum of the decomposition terms is 1

© P. Lichota, 2023/24

12()

N
%z [ (ty) —2;]°
k=1

N
1
N ;[Yi (t) —¥il?

N
1 1
i = —— >[5t 7]y (6~
471 k=1

> Large UM and US values (above 0.1) mean that the model may require

updating

\Warsaw University
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Autocorrelation and PSD 21

» A statistical measure used to check whether the residuals are
independent for different time points (whether they are described
with white noise)

N
1
Ci(0) =< ) 00 = 0[u(ty — 1) — 0"
k=1

» When the residuals denote white noise, C, = 0 for each t

> In practice, it is assumed that C. for all T above 1 should lie in the
band +1.96/+/N more than 95% of the times

» Power spectral density of the residuals
> An alternative to autocorrelation of the residuals (test of whitness)

» For white noise, the power spectrum is uniform over the entire
frequency range

» Autocorrelation and Power spectral density of the residuals are used
to check whether processing noise should be taken into account

\Warsaw University
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Inverse simulation 22

» Determining model quality using inputs instead of outputs

» The measured inputs u are used to obtain the model response y
» Based on the model and controller responses, the control error e,

is calculated

« The model is sufficiently accurate if the control error is less than

0.5deg

Input
signals

\Warsaw University
of Technology
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Comparing with other sources 123

» Comparison of estimates with values from other sources
» Wind tunel tests
» Analytical formulas

-0.8 Sys-1D
Wind tunel
» Physical sense of the obtained results
» Determining the influence of model
parameters on its behavior and
the physical relationship between C -0.9
these parameters. Ip
Response analysis in the complex plane
for an equivalent system (LOES)

« Eigenvalues inform about -1.0
the motion type '

 Eigenvectors inform which
state variables are dominant 00 02 0.4 0.6
for a given motion type Mach

\Warsaw University
of Technology
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Proof-of-match 12/

» Simulation of the aircraft response for data not used during the
identification

» Comparisson between the calcualated outcomes and the measurement
» Small differences indicate good predictive capabilities of the model
» Error bounds determined e.g. from aeronautical regulations

» There can be noise in input signals and flight parameter values at
the trim point for the data set not used during identification

* It is allowed to take biases into account for these quantities
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Proof-of-match in frequency domain 2%

> Obtained for an equivalent system (LOES)

» In the ideal case, the differences in magnitude between measurement
and the estimated model response is 0 dB, and the phase difference is

0 deg
» Model tolerances expressed in terms of magnitude and phase

» Tolerance is determined based on the maximum dynamics of the
system which when included will go unnoticed by the pilot
(Maximum Unnoticeable Added Dynamics)

» Tolerance allow to determine the range of applicability
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v
Software 120
> FITLAB (DLR) ee——— —
» SIDPAC - System Sermees
IDentification Programs S T
for AirCraft (NASA ‘ £z
Langley Research Centre) | e - =

» CIFER - Comprehensive
Identification form FrEquency
Responses (US Army AMRDEC
- NASA Ames Research Center)
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Example “97
> VFW 614 ATTAS - lateral motion ’ | -

» Bias - initial conditions + sensors
systematic errors

> Sideslip angle used as a pseudo-input

» State equation

AP Lp" Lg’ LSA LB, 804 bep
] — / / [ / A8R T
ARl ~ [Np' Ng Ne'l| ag | 1Pxa
» Output equation -
AT [ L] [V Uex Lg] [P
AR| [Np Niliaps [Nba Nip Ni|[28a] | Pver
Aay [=1Yp Ygr [ ]"‘ Ys  Ys Yo ||AOR| T |Pyaa
AR oA OR B y
AP 1 0 0 0 0 _AB_ by »
AR] L 1 4
ARL L0 L0 0 O0- by,
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Example (cont.) 128
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129

Param. ® o - Time section 1 | Time section 2
L, | -2,0467 | 0,0045 0 6 0 o
Ly | 10850 | 00114 || by, |-0,0065 0,0038 0,0243| 0,0038
L,' | -62817 | 00109 | b, 00293 0,0005 0,0313 0,0005
L, | 11669 | 0,0287 | by, |-0,0065 0,0039 0,0244 0,0039
L, | -37474 00188 @ b,z | 0,0295 0,0006 0,0317  0,0006
N,' | -0,1735 | 0,0017 || by, |-0,1901| 0,0043 -0,1764 0,0044
Ng' | -0,4624 | 0,0045 | j=704196e-20
Ny, | -0,3662 | 0,0042
Ny | -17055 0,011
N, | 29909 | 0,0079
Y, | 07170 | 0,0195
Y, | 39012 | 0,054l
Y, | 14464 | 0,0443
Y, | 57624 | 0,1343

y Y5 | -27,0588 0,0866
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